上周我们与星河研究院为大家带来了海外大数据企业中,大数据分析、可视化及BI三个领域公司的详细介绍,本周我们将继续对海外的大数据市场进行盘点,关注的重点为企业大数据检索、产品大数据分析、大数据咨询预测、大数据平台和机器学习这五个领域。
大数据技术与咨询业务的结合则对咨询行业形成了很大的影响,数据技术导向的咨询业务将极有可能成为未来行业的主流选择;
大数据服务支撑平台类企业则为大数据技术的普及和实用化做了很大的贡献,是大数据技术生态中不可或缺的一环;
首先我们将企业大数据检索、产品大数据分析、大数据咨询预测、大数据平台和机器学习这五个领域的典型企业列举如下,接下来我们将分版块为你进行详细介绍。
移动互联网的普及与SaaS服务的兴起令企业沉淀的数据量呈指数级上升,但目前对企业数据价值的挖掘仅仅停留在较浅层面,真正的大数据分析能力还尚未应用。因此如何做好企业内部数据信息价值的发掘成为了关键的第一步。
提升企业数据挖掘检索能力,并将检索的技术门槛降低的典型企业有Algolia,目前其产品具备关键字输入智能容错功能,并提供搜索排名配置,能够让普通员工也能按需要找到自己所需的数据信息。同时Algolia还为移动设备提供了离线搜索引擎,其C++ SDK可以嵌入到应用服务器端,这样即便没有网络连接应用也能提供搜索功能,适用范围很广。
而在SaaS化服务兴起的同时,企业采用多种软件导致内部数据不联通而形成了数据孤岛。根据互联网女皇Mary Meeker的分析,不同行业的公司平均使用SaaS服务的数量从25个至91个,需要跨平台数据检索分析服务。Maana开发的数据搜索和发现平台Maana Knowledge Graph,其长处便是收集来自多个系统或者孤岛的数据,并将其转换为运营,可广泛应用于多个行业。
产品大数据分析相对其他应用来说关注度稍低,但其能够发挥的功能并不少。通过收集用户的浏览、点击、购买等行为,不单从宏观上能够察觉用户群体的喜好变化提前应对,微观上还能够构建用户画像,从而做到定制产品的推荐与营销,能够有效的提升用户的消费水平与满意程度。
Mixpanel便是一家提供类似产品的公司,其让企业用户用户的使用习惯提供实时分析,其产品有用户动态分析(Trends)、行为漏斗模型(Funnels)、用户活跃度(Cohorts)及单用户行为分析(People)等几个模块,全面的覆盖了可能发生的用户行为与场景。
如今大数据技术的发展为事件分析和预测提供了可能,并且准确度和处理速度已经具备了很大竞争力,传统咨询公司的处境类似于现在面对AI的华尔街分析师,或许不久之后会被替代。因此随着逐渐出现大数据咨询公司的同时,传统咨询企业也纷纷与大数据技术公司合作,甚至成立了自己的数据业务部门。
Opera Solutions便是一家依托大数据分析的咨询公司,其创始人是咨询行业资深人士,曾创办了商业咨询公司Mitchell Madison和Zeborg。
目前Opera致力于金融领域的数据分析类咨询,通过建模、定量分析给客户提供,解决客户的商业问题。例如其计算机系统可以一次性采集数十亿条数据,包含从房产和汽车价格到经纪账户和供应链的实时数据等,通过分析获得有关消费者、市场和整个经济体系将如何行动的信号或见解。其客户包含了咨询机构及花旗银行等公司,最近还为摩根士丹利提供了帮助经纪人团队给其客户提供投资的业务。
新技术、机器学习与咨询预测行业的结合,相比于仅使用大数据分析技术能够获得更好的效果,也成为了行业内的一个小热点。例如基于社会物理学原理的Endor能够依托少量数据生成统一的人类行为数据集,并比传统海量数据分析方式更早的做出模式识别与判断。在甄别cebook上受ISIS控制的账号的实验中,根据已知少量ISIS账号特性,Endor高效分辨出了新的ISIS疑似账号并且准确度令人满意。
目前围绕着大数据技术与大数据产业生态链发展的,还有许多是平台服务型的公司,这类公司具备一定的技术水平,但主要通过服务大数据技术公司及科研人员而存在,是技术生态中不可或缺的一环。
Dataiku创建了一个云平台,旨在使数据科学家和普通员工更容易获得公司收集的大数据,并通过机器学习库缩短了专家以及数据分析师所需要的时间。
Algorithmia的平台上提供包括机器学习、语义分析、文本分析等通用性算法,一旦用户找到想用的算法,只需添加几行简单的算法查询代码到应用中,Algorithmia的服务器就会与应用连接,避免了开发者的重复劳动。
目前部分向开发者社区业务发展过渡的平台型企业,因其资源已经得到行业巨头的青睐,被Google收购的Kaggle便是一例,通过举办数据科学周边的线上竞赛,Kaggle吸引了大量数据科学家、机器学习开发者的参与,为各类现实中的商业难题寻找基于数据的算决方案。同时Kaggle为其社区提供了一整套服务,包括知名的招聘服务以及代码分享工具Kernels。
机器学习,是模式识别、统计学习、数据挖掘的技术手段,也是计算机视觉、语音识别、自然语言处理等领域的底层技术,在附件的介绍中大家可以看到,微软Azure、Google云平台及AWS都推出了自己的机器学习产品,而众多的机器学习创业公司则通过提供有特色的技术或服务进行差异化竞争。
已累计获得了7900万美元融资的Attivio专注于利用机器学习技术通过文本进行情绪分析,提供有监督的机器学习与无监督机器学习两种技术,帮助企业通过识别企业语料库中的文档进行情绪建模与分析。思科通过Attivio的智能系统令销售人员能够在与客户合作时依据对方的情绪、消费能力等数据推荐合适产品,从而节省了数百万的销售运营费用,同时节约了销售团队15-25%的时间。
DataRobot的业务是搜索了数百万种可能的算法组合,并进行预处理、特征计算、转换和调整参数,为用户的数据集和预测目标提供最佳模型,使用户无需数据科学专业背景也能在几分钟内构建优秀模型,例如银行利用Datarobot能够自动构建非常准确的预测模型,识别欺诈性金融交易从而避免损失。
以上内容都是围绕大数据技术在各行各业的通用应用来介绍的,这些企业很好的将大数据技术广泛的面向产业进行了普及,令许多行业焕发了生机。但具备行业深度的大数据技术产品需求强烈,目前多数依然处于产品摸索阶段,毕竟同时聚拢大数据人才与行业资深人士所需要的资源门槛较高。
推荐: